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Abstract 
Gene Ontology (GO) annotation is a common task among model organism database (MOD) 
groups. It is a very time-consuming and labor-intensive task, thus often considered as one of the 
bottlenecks in literature curation. There is a growing need for semi- or fully-automated GO 
curation techniques that will help database curators rapidly and accurately identify gene function 
information in full-length articles. Despite multiple attempts in the past, few studies have proven 
to be useful with regard to assisting real-world GO curation. The lack of relevant training data 
and opportunities for interaction between text mining developers and GO curators has limited the 
advances in algorithm development and corresponding use in practical circumstances. To this 
end, we organized a text-mining challenge task for literature-based GO annotation in 
BioCreative IV. More specifically, we developed two sub-tasks: a) to automatically locate text 
passages that contain GO-relevant information (a text retrieval task) and b) to automatically 
identify relevant GO terms for the genes in a given article (a concept recognition task). With the 
support from five MODs, we provided teams with nearly 4,000 unique text passages that served 
as the basis for each GO annotation in our task data. Such evidence text information has long 
been recognized as critical for text-mining algorithm development but was never made available 
due to the high cost of curation. In total, seven teams participated in the challenge task. From the 
team results, we find an overall improvement in performance for recognizing GO terms when 
comparing to similar task results in the past. Future work should focus on improving 
performance of GO concept recognition and incorporating practical benefits of text-mining tools 
into real-world GO annotation.  
 
Introduction 
Manual Gene Ontology (GO) annotation is the task of human curators assigning gene functional 
information using GO terms through reading the biomedical literature. This is a common task 
among Model Organism Database (MOD) groups (1) and can be time-consuming and labor-
intensive.  Thus, manual GO annotation is often considered one of the bottlenecks in literature-
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based biocuration (2). As a result, many MODs can only afford to curate a fraction of relevant 
articles. For instance, the curation team of The Arabidopsis Information Resource (TAIR) has 
been able to curate less than 30% of newly published articles that contain information about 
Arabidopsis genes (3). 
 
Recently, there is a growing interest for building automatic text-mining tools to assist manual 
biocuration (4-10), including systems that aim to help database curators rapidly and accurately 
identify gene function information in full-length articles (11,12). Although automatically mining 
GO terms from full-text articles is not a new problem in BioNLP, few studies have proven to be 
useful with regard to assisting real-world GO curation. The lack of access to relevant evidence 
text associated with GO annotations and limited opportunities for interaction with actual GO 
curators have been recognized as the major difficulties in algorithm development and 
corresponding application in practical circumstances (12,13). As such, in BioCreative IV, not 
only do we plan to provide teams with article-level gold-standard GO annotations for each full-
text article as has been done in the past, but we will also provide evidence text for each GO 
annotation with the help from expert GO curators. That is, to best help text-mining tool 
advancement, evidence text passages that support each GO annotation will be provided in 
addition to the usual GO annotations which typically include three distinct elements: gene or 
gene product, GO term, and GO evidence code.  
 
Also as we know from past BioCreative tasks, recognizing gene names and experimental codes 
from full text are difficult tasks on their own (14-17). Hence, to encourage teams to focus on GO 
term extraction, we proposed, for this task, to separate gene recognition from GO term and 
evidence code selection by including both the gene names and associated NCBI Gene identifiers 
in the task data sets.  
 
Specifically, we propose two challenge tasks towards automated GO concept recognition from 
full-length articles:  
 
Task A: Retrieving GO evidence text for relevant genes 
GO evidence text is critical for human curators to make associated GO annotations. For a given 
GO annotation, multiple evidence passages may appear in the paper, some being more specific 
with experimental information while others may be more succinct about the gene function. For 
this sub-task, participants are given as input full-text articles together with relevant gene 
information. For system output, teams have to submit a list of GO evidence sentences for each of 
the input genes in the paper. Manually curated GO evidence passages will be used as the gold 
standard for evaluating team submissions. Each team is allowed to submit 3 runs.  
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Task B: Predicting GO terms for relevant genes 
This sub-task is a step towards the ultimate goal of using computers for assisting human GO 
curation. As in Task A, participants are given as input full text articles with relevant gene 
information. For system output, teams are asked to return a list of relevant GO terms for each of 
the input genes in a paper. Manually curated GO annotations will be used as the gold standard 
for evaluating team predictions. Similar to Task A, each team is allowed to submit 3 runs.  
 
Generally speaking, the first sub-task is a text retrieval task while the second can be seen as a 
multi-class text classification problem where each GO term represents a distinct class label. In 
the BioNLP research domain, the first sub-task is similar to the BioCreative I GO sub-task 2.1 
(12), BioCreative II Interaction Sentence sub-task (14), and automatic GeneRIF identification 
(18-20). The second sub-task is similar to the BioCreative I GO sub-task 2.2 (12) and is also 
closely related to the problem of semantic indexing of biomedical literature such as automatic 
indexing of biomedical publications with MeSH terms (21-24).  
 
Methods 
 
Corpus annotation  
A total of 8 professional GO curators from five different MODs (FlyBase; MaizeGDB; RGD; 
TAIR; WormBase) contributed to the development of the task data. To create the annotated 
corpus, each curator was asked, in addition to their routine annotation of gene-related GO 
information, to mark up the associated evidence text in each paper that supports those 
annotations using a Web-based annotation tool. To provide complete data for text-mining system 
development (i.e., both positive and negative training data), curators were asked to select 
evidence text exhaustively throughout the paper (25).  
 
For obtaining high-quality and consistent annotations across curators, detailed annotation 
guidelines were developed and provided to the curators. In addition, each curator was asked to 
practice on a test document following the guidelines before they begin curating task documents. 
Due to the significant workload and limited number of curators per group, each paper was only 
annotated by a single curator.  
 
Evaluation measures 
For Task A evaluation, traditional precision (P), recall (R) and F1 score (F1) are reported when 
comparing the submitted gene-specific sentence list against the gold standard. We computed the 
numbers of true positives (TP) and false positives (FP) in two ways: the first one (exact match) is 
a strict measure that requires the returned sentences exactly match the sentence boundary of 
human markups while the second (overlap) is a more relaxed measure where a prediction is 
considered correct (i.e. TP) as long as the submitted sentence overlaps with the gold standard.  
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For the Task B evaluation, gene-specific GO annotations in the submissions will be compared 
with the gold standard. In addition to the traditional precision, recall and F1 score, hierarchical 
Precision (hP), Recall (hR) and F-score (hF1) will also be computed where common ancestors in 
both the computer-predicted and human-annotated GO terms are considered. The second set of 
measures were proposed to reflect the hierarchical nature of GO: a gene annotated with one GO 
term is implicitly annotated with all of the term’s parents, up to the root concept (26,27). Such a 
measure takes into account that “predictions that are close to the oracle label should score better 
than predictions that are in an unrelated part of the hierarchy.” (26) Specifically, the hierarchical 
measures are computed as:  
 

, , 
 

 

 
where and  are the respective sets of ancestors of the computer-predicted and human-
annotated GO terms for the ith gene. 
 
Results 
 
The BC4GO corpus 
The task participants were provided with three data sets comprising a total of 200 full-text 
articles in the BioC XML format (28). Our evaluation for the two sub-tasks was to respectively 
assess teams’ ability to return relevant sentences and GO terms for each given gene in the 50 test 
articles. Hence, we show in Table 1 the overall statistics of the BC4GO corpus including the 
numbers of genes, gene-associated GO terms and evidence text passages. For instance, in the 50 
test articles, 194 genes were associated with 644 GO Terms, and 1,681 evidence text passages, 
respectively. We refer interested readers to (25) for a detailed description of the BC4GO corpus.  
 
Table 1. Overall statistics of the BC4GO corpus. 
Curated Data  Training Set Dev. Set Test Set 
Full text articles 100 50 50 
Genes in those articles 300 171 194 
Gene-associated passages in those articles 2,234 1,247 1,681 
Gene-associated GO terms in those articles 954 575 644 
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Team participation results 
Overall, seven teams (3 from Americas, 3 from Asia, and 1 from Europe) participated in the GO 
task. In total, they submitted 32 runs: 15 runs from five different teams for Task A, and 17 runs 
from six teams for Task B.  
 
Team Results of Task A  
Table 2 shows the results of 15 runs submitted by the five participating teams in Task A. Run 3 
from Team 238 achieved the highest F1 score in both exact match (0.270) and overlap (0.387) 
calculations. Team 238 is also the only team who submitted results for all 194 genes from the 
input of the test set. The highest recall is 0.424 in exact match and 0.716 in overlap calculations 
by the same run (Team 264, run 1), respectively. The highest precision is 0.220 in exact match 
by Team 238 Run 2 and 0.354 in overlap by Team 183, Run 2.   
 
Table 2. Team results for Task A using traditional Precison (P), Recall (R) and F-Mesuare (F1). Both 
strict exact match and relaxed overlap measure are considered. 

Team Run Genes Passages 
Exact match Overlap 
P R F1 P R F1 

183 1 173 1,042 0.206 0.128 0.158 0.344 0.213 0.263 
183 2 173 1,042 0.217 0.134 0.166 0.354 0.220 0.271 
183 3 173 1,042 0.107 0.066 0.082 0.204 0.127 0.156 
237 1 23 54 0.185 0.006 0.012 0.333 0.011 0.021 
237 2 96 2,755 0.103 0.171 0.129 0.214 0.351 0.266 
237 3 171 3,717 0.138 0.305 0.190 0.213 0.471 0.293 
238 1 194 2,698 0.219 0.352 0.270 0.313 0.503 0.386 
238 2 194 2,362 0.220 0.310 0.257 0.314 0.442 0.367 
238 3 194 2,866 0.214 0.366 0.270 0.307 0.524 0.387 
250 1 161 3,297 0.146 0.286 0.193 0.239 0.469 0.317 
250 2 140 2,848 0.153 0.259 0.193 0.258 0.437 0.325 
250 3 161 3,733 0.140 0.311 0.193 0.226 0.503 0.312 
264 1 167 13,533 0.052 0.424 0.093 0.088 0.716 0.157 
264 2 111 2,243 0.037 0.049 0.042 0.077 0.103 0.088 
264 3 111 2,241 0.037 0.049 0.042 0.077 0.103 0.088 
 
Team Results of Task B  
Table 3 shows the results of 17 runs submitted by the six participating teams in Task B. Run 1 
from Team 183 achieved the highest F1 score in traditional (0.134) and hierarchical measures 
(0.338). The same run also obtained the highest precision of 0.117 in exact match while the 
highest precision in hierarchical match is 0.415 obtained by the Run 1 of Team 237. However, 
note that this run only returned 37 GO terms for 23 genes. The highest recall is 0.306 and 0.647 
in the two measures by Run 3 of Team 183.  
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Table 3. Team results for the Task B using traditional Precision (P), Recall (R) and F1-measure (F1) and 
hierarchical precision (hP), recall (hR) and F1-measure (hF1). 

Team Run Genes GO terms 
Exact match Hierarchical match 
P R F1 hP hR hF1 

183 1 172 860 0.117 0.157 0.134 0.322 0.356 0.338 
183 2 172 1720 0.092 0.245 0.134 0.247 0.513 0.334 
183 3 172 3440 0.057 0.306 0.096 0.178 0.647 0.280 
220 1 50 2639 0.018 0.075 0.029 0.064 0.190 0.096 
220 2 46 1747 0.024 0.065 0.035 0.087 0.158 0.112 
237 1 23 37 0.108 0.006 0.012 0.415 0.020 0.039 
237 2 96 2424 0.108 0.068 0.029 0.084 0.336 0.135 
237 3 171 4631 0.037 0.264 0.064 0.150 0.588 0.240 
238 1 194 1792 0.054 0.149 0.079 0.243 0.459 0.318 
238 2 194 555 0.088 0.076 0.082 0.250 0.263 0.256 
238 3 194 850 0.029 0.039 0.033 0.196 0.310 0.240 
243 1 109 510 0.073 0.057 0.064 0.249 0.269 0.259 
243 2 104 393 0.084 0.051 0.064 0.280 0.248 0.263 
243 3 144 2538 0.030 0.116 0.047 0.130 0.477 0.204 
250 1 171 1389 0.052 0.112 0.071 0.174 0.328 0.227 
250 2 166 1893 0.049 0.143 0.073 0.128 0.374 0.191 
250 3 132 453 0.095 0.067 0.078 0.284 0.161 0.206 
 
Discussion and Conclusions 
As mentioned earlier, our task is related to a few previous challenge tasks on biomedical text 
retrieval and semantic indexing. In particular, our task resembles the earlier GO task in 
BioCreative I (12). On the other hand, our two sub-tasks are also different from the previous 
tasks. For the passage retrieval task, we only provide teams with pairs of <gene, document> and 
ask their systems to return relevant evidence text while <gene, document, GO terms> triples 
were provided in the earlier task.  
 
For the GO term prediction task, we provided teams with the same <gene, document> pairs and 
asked their systems to return relevant GO terms. In addition to such input pairs, the expected 
number of GO terms and their associated GO branches (molecular function, biological process, 
and cellular component) returned were also provided in the earlier task. Another difference is 
that along with each predicted GO term for the given gene in the given document, output of 
associated evidence text is also required in the earlier task.  
 
Finally, the evaluation mechanism differed in the two challenge events. We provided the 
reference data prior to the team submission and preformed standard evaluation. By contrast, in 
the BioCreative I GO task, no gold-standard evaluation data were provided before the team 
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submission. Instead, expert GO curators were asked to manually judge the team submitted 
results. Such a post-hoc analysis could miss true positives not returned by teams and would not 
permit evaluation of new systems after the challenge.  
 
In summary, we provided less input information to teams in both sub-tasks and followed 
protocols of standard challenge evaluation – two major differences between our task and the 
previous BioCreative I task (12). This is partly because we aim to have our tasks resemble real-
world GO annotation more closely, where the only input to human curators is the set of 
documents. Despite these differences, we were intrigued by any potential improvement in the 
task results due to the advancement of text mining research in recent years. Since the ultimate 
goal of the task is to find GO terms, the results of Task B are of more interest and significance in 
this aspect, though evidence sentences are of course important for reaching this goal. By 
comparing the team results in the two challenge events (Table 3 above vs. Table 5 in (12)), we 
can observe a general trend of performance increase on this task over time. For example, the 
best-performing team in 2005 (12) was only able to predict 78 TPs (out of 1227 in gold standard) 
– a recall of less than 7% – while there are several teams in our task who obtained recall values 
between 10% and 30%. The numbers are even greater when measured by taking account of the 
hierarchical nature of the Gene Ontology.  
 
Despite these encouraging results, overall team results suggest that automatically mining GO 
terms from literature remains very challenging due to difficulties in multiple aspects: First, the 
number of GO terms (class labels for classification) is extremely large: there are over 40,000 
unique GO concepts to date. Second, GO terms (and associated synonyms) are designed for 
unifying gene function annotations rather than for text mining, and are therefore rarely found 
verbatim in the article. For example, our analysis shows that only about 1/3 of the annotated GO 
terms in our corpus can be found using exact matches in their corresponding articles. On the 
other hand, not every match related to a GO concept is annotated. Instead, only those GO terms 
that represent experimental findings in a given full-text paper are selected. Hence, automatic 
methods must be able to filter irrelevant mentions that share names with GO terms (e.g. the GO 
term ‘growth’ is a common word in articles, but additional contextual information would be 
required to determine if this relatively high-level term should be used for GO annotation 
purposes). Finally, human annotation data for building statistical/machine-learning approaches is 
still lacking. Despite our best efforts, we are only able to include 200 annotated articles in our 
corpus, which contains evidence text for only 1,311 GO terms.  
 
Our challenge task was inspired and developed in response to the actual needs of GO manual 
annotation. However, compared to the real-world GO annotation, the BioCreative challenge task 
is simplified in two aspects: a) gene information is provided to the teams while in reality they are 
unknown; and b) extraction of GO evidence code information is not required for our task while it 
is an essential part of the GO annotations in practice. Further investigation of automatic 
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extraction of gene and evidence code information, along with corresponding GO terms, remains 
as future work.  
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